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Digital photography is widely used by coral reef monitoring programs to assess benthic
status and trends. In addition to creating a permanent archive, photographic surveys
can be rapidly conducted, which is important in environments where bottom-time is
frequently limiting. However, substantial effort is required to manually analyze benthic
images; which is expensive and leads to lags before data are available. Using previously
analyzed imagery from NOAA’s Pacific Reef Assessment and Monitoring Program, we
assessed the capacity of a trained and widely used machine-learning image analysis
tool – CoralNet coralnet.ucsd.edu – to generate fully-automated benthic cover estimates
for the main Hawaiian Islands (MHI) and American Samoa. CoralNet was able to
generate estimates of site-level coral cover for both regions that were highly comparable
to those generated by human analysts (Pearson’s r > 0.97, and with bias of 1% or less).
CoralNet was generally effective at estimating cover of common coral genera (Pearson’s
r > 0.92 and with bias of 2% or less in 6 of 7 cases), but performance was mixed for
other groups including algal categories, although generally better for American Samoa
than MHI. CoralNet performance was improved by simplifying the classification scheme
from genus to functional group and by training within habitat types, i.e., separately for
coral-rich, pavement, boulder, or “other” habitats. The close match between human-
generated and CoralNet-generated estimates of coral cover pooled to the scale of
island and year demonstrates that CoralNet is capable of generating data suitable for
assessing spatial and temporal patterns. The imagery we used was gathered from sites
randomly located in <30 m hard-bottom at multiple islands and habitat-types per region,
suggesting our results are likely to be widely applicable. As image acquisition is relatively
straightforward, the capacity of fully-automated image analysis tools to minimize the
need for resource intensive human analysts opens possibilities for enormous increases
in the quantity and consistency of coral reef benthic data that could become available
to researchers and managers.
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INTRODUCTION

The scale and severity of threats to coral reefs have increased
substantially in recent years (Burke et al., 2011; De’ath et al.,
2012; Hughes et al., 2018a). Local stressors, such as land-based
pollution, crown-of-thorns seastar predation, disease outbreaks,
over-exploitation, and destructive fishing practices have caused
significant localized reef decline (Edinger et al., 1998; Fabricius,
2005; Miller et al., 2009). Additionally, coral reefs have recently
experienced consecutive years of thermal stress and mass coral
bleaching resulting in widespread coral mortality (Heron et al.,
2016; Couch et al., 2017; Hughes et al., 2018a,b). Given the speed
of change and the increasing severity of threats, scientists and
managers need the capability to rapidly assess coral reef status,
ideally over large areas, and to quantify change. In addition,
broad-scale data on benthos are critical to understanding drivers
of change and identifying management responses that promote or
undermine coral reef resilience, i.e., the ability to resist or recover
from stressors (Maynard et al., 2010; McClanahan et al., 2012).

While a variety of metrics are used to assess coral reef
status and trends, the majority of coral reef surveys and
monitoring programs gather information on percent cover
of benthic organisms, particularly coral cover (De’ath et al.,
2012; Johansson et al., 2013). During the last 30 years, many
benthic monitoring programs have transitioned from in situ
measurements of benthic cover to some form of photographic
survey, such as photo-transects and video surveys. These
approaches not only create a permanent archive suitable for
subsequent analysis, but also tend to greatly reduce in-water
survey time, which is frequently constraining for underwater
visual surveys. In combination with photographic surveys,
utilization of towed divers, diver propulsion systems, and
autonomous underwater vehicles can facilitate considerable
expansion of spatial coverage (Armstrong et al., 2006; Williams
et al., 2010; González-Rivero et al., 2014). However, the
concomitant post-survey burden associated with extracting data
from the acquired imagery is a major drawback of photographic
survey approaches. Images gathered from those types of surveys
have typically been manually analyzed using point annotation
software, such as Coral Point Count with Excel extensions
(CPCe), photoQuad, pointCount99, PhotoGrid, or Biigle (Porter
et al., 2001; Kohler and Gill, 2006; Trygonis and Sini, 2012;
Langenkämper et al., 2017). As manual annotation of imagery
is time-consuming and thus expensive, this not only limits
the amount of survey data that can feasibly be analyzed,
but can also lead to significant lags before survey results
become available. Additionally, variability in performance among
human analysts, which can be non-trivial for some groups of
benthos, is a potential source of bias (Beijbom et al., 2015;
González-Rivero et al., 2016).

Recent advances in automated image analysis suggest that
there is scope for a substantial portion of the image-analysis
workload to be automated using machine-learning tools. During
the last decade, several programs have been developed to
automate point classification of benthic imagery (Marcos et al.,
2005; Stokes and Deane, 2009; Shihavuddin et al., 2013; Beijbom
et al., 2015). The most widely used of those, at least for coral reef

surveys, is CoralNet1, which includes an online repository, a tool
that allows the user to manually-annotate imagery and machine-
learning algorithms to fully- or partially-automate classification
of benthic imagery once sufficient data are available to train the
system (Beijbom et al., 2015).

In the first (alpha) version of CoralNet, image features based
on texture and color were extracted from imagery and then
classified by a Support Vector Machine (Beijbom et al., 2015).
The performance of that version was assessed by comparing
automatically generated benthic point data against data generated
by a number of human annotators. Compared to human analysts,
the accuracy of automatically generated benthic point data varied
considerably among different benthic categories – with 62%
accuracy for coral and 28–48% for algal groups: macroalgae, turf,
and crustose coralline algae (CCA). This was significantly lower
than the accuracy of human annotators when compared to the
same annotators’ previous annotations, and in comparison to
other human annotators analyzing the same sets of imagery. In
late 2016, an updated (beta) version of CoralNet was released.
This version relies on Deep Learning, which has replaced
hand-crafted features for almost all computer vision tasks and
revolutionized the field (LeCun et al., 2015). In the beta version of
CoralNet, accuracy (i.e., agreement with reference annotations)
of the automated classifier “robot” increased to 80% for corals
and 48–66% for algal groups, such as macroalgae, turf, and CCA.
Those levels of accuracy are comparable to what are typically
achieved by different human analysts manually annotating the
same points (Beijbom unpubl. data).

However, despite improved classification in the beta version,
and widespread usage of CoralNet as an image analysis and
archiving tool, few users utilize any level of automation in
CoralNet analysis. Specifically, as of July 2018, CoralNet users
had uploaded 822 data sets consisting of over 700,000 images to
CoralNet, but few users make use of any form of automation, and
half of those that do only permit CoralNet to annotate points
when the “robot” (i.e., automated-analysis algorithm) is at least
90% certain of a classification.

Here, we aim to build on previous studies of CoralNet by
assessing and refining its use in its current (beta) form as an
automated analysis tool for a large-scale survey and monitoring
program. The data and imagery we use come from NOAA’s Pacific
Reef Assessment and Monitoring Program (Pacific RAMP) which
has surveyed coral reefs at approximately 40 islands and atolls
across the US-affiliated Pacific since the early 2000s. For that
program, survey sites are randomly located in diverse hard
bottom habitats and water depths around multiple islands in
each region and, therefore, span wide ranges of habitat structure,
exposure, and light availability – factors which affect benthic
assemblage structure as well as color and organism morphology,
thus adding complexity to automated classification (Glynn, 1976;
Dollar, 1982; Salih et al., 2000). Specifically, we utilize previously
human-analyzed imagery from two regions – American Samoa
and Hawaii – to train CoralNet systems and test the ability of
the resulting trained robots to: (1) fully-automatically generate
estimates of benthic cover for different functional groups and

1coralnet.ucsd.edu
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coral genera; (2) compare fully-automatically generated site- and
island-scale estimates of cover against those generated by human
analysts for different habitat types and regions; and (3) assess
the impacts of using different benthic classification schemes of
varying complexity.

MATERIALS AND METHODS

Source of Benthic Imagery, Survey
Methods and Design
The imagery and benthic data used in this study were gathered
by NOAA’s Pacific Islands Ecosystem Sciences Division (ESD) for
the Pacific RAMP, which is part of the US National Coral Reef
Monitoring Program (NCRMP) (NOAA Coral Program, 2014).
In its current form, Pacific RAMP visits and surveys regions and
islands once or twice every 3 years. During each survey visit,
sites around each island are randomly located within three depth
strata comprising all hard bottom habitats in <30 m of water,
with primary focus on fore reef habitats. Back reef and lagoon
habitats are also surveyed, but much less intensively. Survey
sites encompass substantial variability in habitat type (including
rock/boulder, and pavement habitats), reef condition, benthic
assemblages, and coral cover (ranging from 0 to >70% in each
region), as well as in environmental factors that influence image
quality, such as water depth and turbidity.

Survey data and imagery used in this study come from two
regions: the main Hawaiian Islands (MHI) and American Samoa
(Figure 1), those being regions with relatively low and relatively
high coral diversity, respectively. MHI imagery was gathered
between 2010 and 2015, and American Samoa sites from 2015.
The number of sites per island and year are shown in Table 1.

At each site, a total of 30 benthic images were captured along
1 or 2 transect lines with a total combined length of 30 m (1
photograph per meter). Photos were taken with digital cameras,
maintained at a standard height above the substrate using a 1-m
PVC monopod. No artificial lighting was used; instead cameras
were manually white balanced by divers immediately before they
began the photo-transect. Details of cameras and settings are
provided in Supplementary Table S1. More detail on survey
design and methods are available elsewhere (Heenan et al., 2017;
Swanson et al., 2018).

Previous Annotation of Imagery by
Human Analysts
Benthic images used in this study had been previously annotated
by human analysts, all of whom were trained in identification of
benthic organisms and had passed a data quality test. Analysts
identified benthic organisms under 10 randomly-located points
per image (totaling 300 points per site). Coral Point Count with
Excel extensions (Kohler and Gill, 2006) (CPCe) was used to
analyze MHI imagery from 2010 and 2012, and CoralNet for
all other images (Lozada-Misa et al., 2017). Images annotated
with CoralNet used the “ORIGINAL” classification scheme
(Supplementary Table S2), which required analysts to identify
corals to genus or a combination of genus and growth form for

select genera (Montipora, Pavona, and Porites), macroalgae to
genus, and other benthic features to functional group or higher-
level taxonomic grouping (e.g., “sand,” “sponge,” “turf algae”)
(Lozada-Misa et al., 2017). Images analyzed with CPCe were
analyzed using similar schemes, but with corals only identified to
growth-form for 2010 imagery. Imagery was arbitrarily assigned
to different human analysts within a pool of trained analysts – 11
for MHI, and 8 for American Samoa.

Training and Testing CoralNet
Although CoralNet can be used solely as a tool for manual
annotation imagery, its greater potential comes from its machine-
learning capabilities, which allow trained CoralNet systems to
automatically annotate additional imagery (Beijbom et al., 2015).
For this study, we used data from imagery that had previously
been manually-annotated in CoralNet to generate training and
test sets in order to assess the ability of CoralNet (beta) to
automatically estimate benthic cover.

CoralNet allows users to organize images into “sources” (i.e.,
a set of images and an associated benthic classification scheme).
Sources are defined at the discretion of the user, but would
typically be based on geography, habitat, depth zone, or other
characteristic that would lead users to group a set of images
together and apply a common benthic classification scheme. ESD
created region-specific sources – e.g., one for MHI and another
for American Samoa. A key consideration when defining a source
is that the CoralNet machine-learning algorithm operates within
a source. Thus, identification of a point as being of the coral genus
Pocillopora in the MHI source would contribute to the training
of the MHI “robot,” but it would not at all affect the training of
robots in other sources.

We created two sources for this analysis: one for American
Samoa, using imagery from 468 sites, and one for MHI, with
imagery from 913 sites. All the American Samoa imagery and
598 of the MHI images had been previously manually analyzed
in CoralNet (Table 1). Those existing manual annotations formed
the basis of our training sets, i.e., they were used to train CoralNet
“robots” in our new sources. As noted above, the other MHI
images (from 2010 and 2012) had not been analyzed using
CoralNet and had used slightly different classification schemes.
Therefore, data from those images could not be included in the
training sets. We nevertheless included those images in the MHI
source so we could compare functional-group cover (e.g., “coral,”
“turf”) generated from those images by trained CoralNet systems
against values from the earlier manual annotation.

We downloaded and uploaded point annotations to and from
CoralNet in “annotation files,” which included the filename, x-y
coordinates within image, annotation-value (i.e., classification
of each point), and annotator-identifier for each of the 10
points on each image. From the original CoralNet human-
analyst annotations, we generated paired training sets, retaining
the original annotations for one half of the training imagery,
and setting annotations for the other points to blanks. Having
paired training sets allowed us to successively train CoralNet
on one half of the previously analyzed imagery within a
source and then let CoralNet automatically annotate the
remaining imagery. As the CoralNet robot was initialized
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FIGURE 1 | Survey sites in MHI and American Samoa. Each dot represents a survey site. At each site, 30 planar benthic photographs were taken by survey divers
from ∼1 m above the substrate.
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between each run, we were able to combine the automatically-
annotated data from the two runs in each pair to generate
a complete set of fully-automated annotations for a source.
Importantly, this meant that CoralNet robots were never trained
on the points that they subsequently automatically annotated.
As each training set included half of the suitable images,
the full American Samoa training set included annotations
from 70,200 points (half of 468 sites × 30 images × 10
points), and each full MHI training set included annotations
from 89,700 points.

For each source, we trained and tested CoralNet for
three variations of the classification scheme, (Supplementary
Table S2): the relatively complex “ORIGINAL” scheme, which
has the finest resolution of classification, with 85 distinct benthic
classes (65 used for MHI); the SIMPLER scheme, in which
corals and macroalgae were pooled to a smaller number of
classes (32 in American Samoa, 31 in MHI), based on growth
form for corals and division for macroalgae (e.g., red, green,
brown algae), but with some common and relatively distinct
genera retained (among corals: Porites, Pocillopora, Montipora in
MHI; those plus Acropora in Samoa; and, among macroalgae:
Halimeda in American Samoa); and “BASE” (14 classes), in
which benthos was pooled to functional group – e.g., “all coral”;
“all macroalgae.”

As there was great variability among sites in habitat types
within our broad survey domains, particularly in MHI, we
trained and tested the MHI BASE scheme separately within
four habitat types which had been recorded at the time of the
surveys, using an explicit classification scheme (Ayotte et al.,
2015). Those habitat types were: “aggregate reef,” which are
continuous and generally structurally-complex habitats with
conspicuous cover of corals; “pavement,” which are relatively
flat habitats with low and patchy coral cover; “rock-boulder,”
which are complex, frequently basalt habitats with highly
variable coral cover, and for all “other” habitats. There were
respectively 188, 167, 159, and 84 sites within each of those
habitat types that were used for training. The great majority
of American Samoa sites were classified as aggregate reef;

TABLE 1 | Number of survey sites per island per year.

Main Hawaiian Islands 2010 2012 2015 2016

Hawaii 37 – 82 79

Kauai 20 – 17 44

Lanai 14 27 11 33

Maui 30 43 27 41

Molokai 9 48 38 32

Niihau 16 – 42 15

Oahu 36 35 32 77

Kahoolawe – – – 28

American Samoa 2015

Ofu and Olosega 81

Rose 49

Swains 47

Tau 64

Tutuila 227

therefore, there was no clear reason to filter those by habitat.
Instead, images from American Samoa were separately trained
and tested with the BASE classification for each of the five
islands (Table 1).

Data Synthesis and Analysis
Manually-annotated (“human-analyst”) and fully machine-
annotated (“CoralNet”) point data were pooled to site-level
percent cover estimates. Bland-Altman plots (Bland and Altman,
1986) were used to compare and visualize the human-analyst
and CoralNet estimates of benthic cover. Specifically, those
show site-level differences between the two estimates plotted
against the site-level mean of the two methods. To quantify the
performance of different schemes, we calculated the mean and
standard deviation of site-level differences in cover between the
two types of annotation.

In order to compare human-analyst and CoralNet
performance at scales that are likely more relevant to many
monitoring programs, site-level data were pooled by island
and year (henceforth “island-year”) using a standard approach
to generate higher-level data from the stratified-random
design, i.e., mean and variance per strata were weighted by
the size of the strata to generate island-scale values (Heenan
et al., 2017). The extent and significance of the differences in
cover for all possible island-year pairs were calculated and
compared between the two annotation methods. By doing
so, we assessed whether we would draw different conclusions
about spatial and temporal patterns among island-years from
CoralNet and human-analyst cover estimates. Specifically,
for the MHI, we had data from 4 to 8 islands in each of
the 4 years (Table 1) – leading to 325 pairwise island-year
combinations (e.g., between Oahu 2012 and Oahu 2015; or
between Oahu 2012 and Maui 2015). For American Samoa,
there were only data from five islands in a single year, and
thus 10 possible island-year pairs. For each method, the
mean and standard error of difference in cover between all
possible island-year pairs were calculated as follows (with
“ISL1” and “ISL2” being the two island and year combinations
in a pair):

Mean of difference = absolute(MeanISL1−MeanISL2)

Standard error (SE) of difference = √(SE2
ISL1+SE2

ISL2)

We converted standard error of difference to 95% confidence
intervals using the t-distribution for the degrees of freedom of
the island-year pair (NISL1 + NISL2 – 2). We considered 95%
confidence interval of difference not overlapping zero as evidence
of significant difference at alpha of 0.05.

Finally, in order to visualize the impact of training set
size on site-level consistency between annotations methods,
we calculated the mean difference between human-analyst and
CoralNet cover estimates for all test runs and plotted that against
the size of the test run training set (i.e., how many annotated
points were included in that training set). Human-analyst
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and CoralNet data used in this study are provided in the
Supplementary Materials.

RESULTS

Site-Scale Coral Cover Estimates
For both MHI and American Samoa sites, human-analyst,
and CoralNet coral cover estimates were strongly correlated
(Pearson’s r > 0.97) for all training schemes However, in
both regions, statistical fits were better, i.e., differences between
annotation methods were reduced and fit closer to 1:1 line in
the more simplified training schemes (Figure 2). For MHI sites,
the best fit was for the “BASE-HABITAT” training scheme, i.e.,
using the BASE classification with sites trained and automatically

annotated separately for each habitat type, for which the mean
of CoralNet minus human-analyst coral cover estimates was
−0.6 ± 3.4% (mean ± standard deviation, Figure 2). Among
those MHI habitat types, the fit between human-analyst and
CoralNet coral cover estimates was notably better for aggregate
reef sites than for sites in other habitat types (Figure 3). For
American Samoa sites, the best fit was for the BASE scheme –
benthos classified to broad functional groups for which the
mean difference between CoralNet and human-analyst site level
estimates was 1.0 ± 2.7%. Separately training and automatically
analyzing American Samoa sites by island (“BASE-ISLAND”
scheme) marginally worsened the fit.

The capacity of CoralNet to generate estimates of cover of
common coral genera varied between regions and among genera
(Figure 4). For MHI sites, relative to human-analysts, CoralNet

FIGURE 2 | Site-level coral cover by human analysts and CoralNet for different classification and training schemes. For each pair of figures, each point in the
left-hand figures is a single site; the solid black line is the 1:1 line, the dashed red line is a linear fit of the point data, and “r” value shown is Pearson’s correlation.
Each point in the right-hand figures is the difference between CoralNet and human-analyst cover estimates at a site, plotted against the mean of cover from the two
annotation methods. The red horizontal line is the mean of the site-level difference in cover; and the blue dashed lines represent mean ±1 standard deviation (SD).
Training schemes are defined in Supplementary Table S2, but go from most complex (“ORIGINAL,” in which corals and macroalgae are generally identified to
genus and below) to most simplified (“BASE,” in which benthos is analyzed to functional group only). The bottom row represents schemes in which CoralNet was
trained using the BASE classification but with sites filtered by habitat type for MHI (“BASE-HABITAT”) and by island for American Samoa (“BASE-ISLAND”)
(Supplementary Table S2). Total number of sites is 598 for MHI, and 468 for American Samoa. Correlations are significant (p < 0.0001) in all cases.
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FIGURE 3 | MHI Site-level coral cover by human analysts and CoralNet within different habitat types. Each point represents a single site; the solid black line is the
1:1 line, and the dashed red line is a linear fit of the point data. Results are for CoralNet trained using the “BASE” classification (Supplementary Table S2). “r” values
are Pearson’s correlation coefficients. Number of sites per habitat type are: 188 for aggregate reef; 167 for pavement; 159 for rock-boulder; and 84 for other
habitats. Correlations are significant (p < 0.0001) in all cases.

generated similar estimates of Porites cover (Pearson’s r = 0.98,
difference: 0.1± 2.2%), tended to underestimate Montipora cover
(Pearson’s r = 0.92, difference: −1.7 ± 5.7%), and was least
well correlated with Pocillopora (Pearson’s r = 0.81, difference:
−0.1 ± 1.1%). In contrast, for the four genera we assessed
at American Samoa sites, CoralNet, and human-analyst cover
estimates were strongly correlated (Pearson’s r > 0.95) and
otherwise in relatively good agreement – the highest difference
between CoralNet and human-analyst cover was 1.1 ± 2.7%
for Montipora.

Site-Scale Estimates of Other Benthos
CoralNet performance for other broad benthic categories:
macroalgae, CCA, sand/sediment, and turf, varied considerably
between regions (Figure 5). For MHI sites, CoralNet tended to
substantially overestimate turf cover (difference: 10.9 ± 10.0%),
the dominant component of benthos at many MHI sites, and
underestimate other categories compared with human analysts
(Figure 5). In contrast, CoralNet and human-analyst cover
estimates of those groups were fairly consistent for American
Samoa sites, particularly for CCA, which was abundant in that
region (Figure 5). Relative to human-analysts, CoralNet also
tended to overestimate turf cover at American Samoa sites, but
to a much lower degree than in the MHI (difference: 6.2 ± 5.7%,
Figure 5). At American Samoan sites, CoralNet generated cover
estimates for a number of algal sub-groupings that were similar to

those generated by human-analysts, including Halimeda, “other
green macroalga” (Pearson’s r > 0.96 and relatively unbiased
for both, Supplementary Figure S1), and encrusting macroalgae
(e.g., Peyssonnelia, and encrusting growth forms of genera, such
as Lobophora).

Comparisons Between CoralNet and
Human-Analyst Pooled Coral
Cover Estimates
The high degree of consistency between human-analysts and
CoralNet in MHI site level coral cover, resulted in a mean
difference between annotation methods of 0.8% (±0.7% SD)
when data were pooled by island and year (Figure 6). Of
the 26 MHI island-years from which we have data, CoralNet
and human-analyst coral cover estimates only twice differed by
>2.5% – for Oahu and Lanai, both in 2010. Coral cover estimates
were relatively good at Niihau (which had low coral cover) and
Hawaii Island, which had had average cover of 14.6%, but for
which the difference between annotation methods was <0.3% in
all years (Figure 6). Concordance between annotation methods
was lower at Oahu and Kauai, both of which had moderate to
low coral cover – i.e., means of around 5–7% – but where the
difference between annotation methods was consistently ∼2% in
each year (Figure 6). Notably, for all island-year combinations,
the differences between CoralNet and human-analyst estimates
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FIGURE 4 | Site-level coral cover of common genera by human analyst and CoralNet. Figures in the left column are for MHI sites, and in the right column for
American Samoa. Each point represents a single site; the solid black line is the 1:1 line, and the dashed red line is a linear fit of the point data. Acropora were not
recorded at MHI sites. CoralNet was trained using the “SIMPLER” classifications (Supplementary Table S2). “r” values are Pearson’s correlation coefficients. Total
number of sites is 598 for MHI, and 468 for American Samoa. Correlations are significant (p < 0.0001) in all cases.

of coral cover (i.e., methodological differences) were relatively
small compared to the uncertainty in the island-year estimate
per method (i.e., the variability among sites within the island-
year). Specifically, there was a substantial degree of overlap
between CoralNet and human-analyst error bars for each island-
year (Figure 6). Differences in relative performance of CoralNet
compared to human-analysts may have been in part due to
variation in the dominant coral genera at each island, as CoralNet
island-year estimates were clearly better for Porites than for
Montipora (Supplementary Figure S2).

CoralNet estimates of coral cover at American
Samoa were higher than human-analyst estimates
at all five islands. Differences in island-scale mean
were <1% at Ofu and Olosega, Tau, and Tutuila,
but 4.1% at Swains (Figure 7). The relatively poor
performance of CoralNet at Swains may have been
related to CoralNet underestimating both Montipora
(the most abundant genus at Swains) and Acropora
(Supplementary Figure S3). CoralNet estimates of algal
cover at American Samoa were relatively good for data
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FIGURE 5 | Site-level coral cover of non-coral functional groups by human analyst and CoralNet. Figures on the left-hand side show MHI site data, and those on the
right represent American Samoa sites. Each point denotes a single site; the solid black line is the 1:1 line, and the dashed red line is a linear fit of the point data. MHI
CoralNet estimates were derived from the “BASE-HABITAT” classification. American Samoa CoralNet estimates were derived from the “BASE” classification
(Supplementary Table S2). “r” values are Pearson’s correlation coefficients. Total number of sites is 598 for MHI, and 468 for American Samoa. Correlations are
significant (p < 0.0001) in all cases.

pooled to island-scale, particularly for CCA and Halimeda
(Supplementary Figure S4).

Relative Performance of CoralNet and
Human-Analyst Data at Quantifying
Differences Coral Cover in Space
and Time
CoralNet performed similarly to human analysts when
quantifying the magnitude and statistical significance of

differences in coral cover between island-year pairs. For both
regions, there was close to 1:1 agreement between CoralNet and
human-analyst estimates of difference in coral cover between
island-years (Figure 8), indicating that CoralNet estimates were
unbiased compared to those derived from human-analyst data.
Also, of the 10 possible paired comparisons among islands in
American Samoa, the same six pairs were consistently considered
significantly different, whether CoralNet or human-analyst cover
estimates were used (Figure 8). For the MHI, CoralNet, and
human-analyst estimates yielded the same statistical result for
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FIGURE 6 | MHI Island-scale coral cover per year from human analysts and CoralNet. Columns represent annual mean and standard error of coral cover by island
and year. CoralNet estimates were derived from the “BASE-HABITAT” classification (Supplementary Table S2). Numbers of sites per island and year are shown in
Table 1, but vary between 9 and 8 for MHI.

95% (310 of 325) of island-year pairs (Figure 8). In cases where
the statistical outcome was different, that result was due to small
differences in confidence intervals – e.g., results were marginally
significant for human-analysts and marginally non-significant
for CoralNet. There was also very little difference in the precision
of human-analyst and CoralNet estimates of scales of differences
between island-year pairs. Among MHI island-year pairs,
CoralNet confidence intervals of difference were on average 95%
of human-analyst confidence intervals; and for American Samoa
island pairs, CoralNet confidence intervals were 104% of those
from human-analyst estimates.

Impact of Training Set Size on Site
Level Error
For the MHI BASE-HABITAT and American Samoa BASE-
ISLAND training runs, mean site-level coral cover error (i.e.,
the mean difference between human-analyst and CoralNet site
level cover) ranged from 1.1 ± 1.4% (mean ± SD) at MHI
rock-boulder sites, to 3.9 ± 2.7% at Swains (Supplementary
Figure S5). For those training sets, which were the smallest sets
used in each region, there was no evident association between
mean error and the size of training set (which ranged from
7,050 previously annotated points at Swains to 34,050 at Tutuila,
Supplementary Figure S5).

DISCUSSION

Our results demonstrate the potential to use fully-automated
image analysis tools to quantify spatial and temporal differences
in coral reef benthic cover. The imagery used in this study came
from sites randomly located across all hard-bottom, <30 m
fore reef habitats around five islands in American Samoa and
eight islands in the MHI. Despite the broad geographic scope
of our surveys, which encompass diverse coral communities,
habitats, and ambient conditions – including light and turbidity –
CoralNet systems were capable of generating estimates of coral
cover that were highly comparable to those produced by
human analysts. Our results therefore highlight the feasibility of
developing a regional-scale automated image-analysis capability
for key benthic features that could support multiple research and
monitoring needs to increase the amount of data available to
inform coral reef management.

An important step to improving comparability of CoralNet
and human-analyst benthic cover estimates was to assess a range
of classification schemes from relatively simple to relatively
complex. CoralNet tended to underestimate coral cover relative
to human analysts by an average of approximately 2–3% per site
in the more complex classification schemes, but the bias was
reduced to around 1% or less for the simplest schemes – in which
all corals were grouped into a single category. We also found that
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FIGURE 7 | American Samoa island-scale coral cover from human analysts and CoralNet. Coral cover mean and standard error is shown for each island. CoralNet
estimates are for the “BASE” classification (Supplementary Table S2). Numbers of sites per island are shown in Table 1, but vary between 47 and 227 for
American Samoa.

FIGURE 8 | Difference in cover between all island-year pairs for human-analyst and CoralNet. Each point represents one island-year pair (325 pairs in MHI, 10 for
American Samoa). The black solid-line represent the 1:1 – i.e., difference in cover between island-years was identical for the two methods. The red hatched line is a
linear fit of the points. Points shown in dark gray are cases where human-analyst and CoralNet produced the same statistical result. The 15 red points in MHI are
cases where there was a difference in statistical outcome depending on the annotation method used. Solid circles represent island-year pairs for which
human-analyst cover estimates did not significantly differ, and empty circles where the difference was significant.
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training robots with imagery from a single comparable habitat
improved performance. Estimates with known and relatively
consistent bias can still be useful, as it is possible to adjust
for that. Nevertheless, it seems desirable to reduce the scale
of those differences where possible. Our study does not prove
that simple schemes should generally be expected to improve
CoralNet performance, but it does indicate that testing a range
of classification schemes is likely necessary to maximize the
utility of the CoralNet system for any particular research
question and situation.

Although we compare CoralNet data against human-analyst
data, we do not intend to imply that human-analyst data perfectly
represents benthic cover. In fact, differences in performance
among even experienced analysts tend to be of a similar scale
to that which we found between CoralNet and overall human-
analysts for the best performing classification schemes, i.e., ∼1%
difference in coral cover estimates per site and considerably
higher for some other benthic groups (Beijbom et al., 2015;
González-Rivero et al., 2016). Arguably, as well as reducing the
resources required to conduct analysis, one of the key benefits of
using automated analysis tools such as CoralNet is that analyst
performance will be consistent across the entire image dataset,
and thus patterns in space and time do not risk being confounded
or obscured by differences in analyst performance. Our study
clearly demonstrates the potential to use CoralNet in this way –
as CoralNet performed nearly identically to our pool of human
analysts when quantifying the scale and statistical significance of
differences in coral cover between island-year pairs. Using a large
pool of trained and experienced analysts, as we do, is one way to
reduce human-analyst bias between survey periods and locations.
However, that is not always possible, and automated analysis is
likely to be particularly useful for survey programs that rely on
a small number of analysts, or where there is high turnover of
analysts – as both of those increase scope for inconsistent analyst
performance to lead to bias.

Even with the large training sets available to us, automated
classification was strongly dissimilar to human-annotations for
some common groups, such as most algal categories in MHI.
Previous studies using Support Vector Machines have tended
to show relatively poor analysis performance, both automated
and manual, for algal groups (Beijbom et al., 2015; González-
Rivero et al., 2016). Turf is a particularly challenging group
(Beijbom et al., 2015; González-Rivero et al., 2016), as there
is inherently great variability within that category, from nearly
bare and heavily cropped substrate to relatively thick turf mats
along with substantial differences in color and texture of different
nominally “turf” patches. High variability within and among
human analysts leads to a high degree of error in human-analyst
estimates, as well as inconsistent training of the automated
classifier, both of which likely contributed to the relatively
high degree of difference between human-analyst and CoralNet
estimates for some of these categories. Notably, for American
Samoa, but not MHI, there was strong agreement between
CoralNet and human-analysts for CCA. This may partly have
been due to much greater abundance of CCA in American Samoa
(mean cover ∼18% across all sites) than in MHI (∼4%), but may
also have been due to substantial differences in CCA appearance

between regions. In American Samoa, CCA forms distinct,
conspicuous and often brightly-colored patches, whereas, in the
MHI, CCA patches are typically small and less-distinct within a
mosaic of other algal and benthic groups.

Certainly, the high degree of variability in algal morphology is
likely to present challenges for both human and automated image
analysis, which highlights the need for careful consideration
of the objectives of automated analysis. Even when it is
not possible to adequately train an automated analyst for
all categories of interest, there is likely still considerable
scope for using automation to reduce human-analyst workload.
For example, running CoralNet in alleviation mode involves
CoralNet providing classification suggestions together with a
measure of confidence allowing human analysts to accept or
modify those suggestions (Beijbom et al., 2015).

The ability to train automatic annotators capable of robustly
quantifying coral cover from essentially all shallow water reefs
within two disparate regions highlights the scope for automated
image analysis to greatly increase the quantity of benthic data
that can be feasibly and cost-effectively generated by monitoring
programs. Even with a human-assisted workflow, the image
analysis bottleneck and associated costs could be greatly reduced,
thereby allowing for more imagery to be collected from more
sites. Such an approach would improve data quality – by
increasing representativeness of data or by increasing precision
and therefore statistical power. The greatest potential gains
might come from fully-automated image analysis combined
with use of autonomous platform technologies to increase the
amount and scale of image acquisition (Griffin et al., 2017;
Manderson et al., 2017).

Given the evident capacity of automated analysis technology
to generate high quality benthic data, it may be desirable to
develop image-analysis tools suitable for much wider use. For
example, citizen scientists could take advantage of trained and
proven automated analysis robots from their region. Users
of those systems could thereby rapidly convert imagery into
data useful for their own purposes and potentially contribute
to regional data pools. That would presumably require some
degree of standardization – e.g., in image resolution, photograph
orientation, and image footprint. Collectively, this could lead to
large, highly-comparable datasets suitable for purposes such as
landscape ecology, habitat mapping, and marine spatial planning
(González-Rivero et al., 2016).

Automated image analysis technology is likely to greatly
improve in coming years, perhaps in part through accounting
for 3-dimensional structure of benthic features, as can be derived
from structure-for-motion photogrammetry (Burns et al., 2015;
Edwards et al., 2017). However, it is clear that automated
analysis tools, such as CoralNet, are already capable of generating
benthic cover estimates comparable to those derived from human
analysts, and suitable for many purposes. The capacity to rapidly
convert large quantities of geo-referenced imagery into robust
cover data has the potential to transform what can be achieved
by coral reef monitoring and survey programs, particularly if
integrated with advances in automated image acquisition. Fully
realizing those benefits will require standardization of analysis
methodologies, image acquisition, and classification schemes,
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and a commitment to increased sharing of data and imagery
(Durden et al., 2017). Doing so will greatly increase the utility
of resulting data for a wide range of conservation, management,
and research purposes.
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